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Abstract 
 
The performance of a set of fifteen global climate models used in the Coupled Model 

Intercomparison Project is evaluated for Alaska and Greenland, and compared with the 

performance over broader pan-Arctic and Northern Hemisphere extratropical domains.  

Root-mean-square errors relative to the 1958-2000 climatology of the ERA-40 reanalysis 

are summed over the seasonal cycles of three variables: surface air temperature, 

precipitation and sea level pressure.  The specific models that perform best over the 

larger domains tend to be the ones that perform best over Alaska and Greenland.  The 

rankings of the models are largely unchanged when the bias of each model’s 

climatological annual mean is removed prior to the error calculation for the individual 

models.  The annual mean biases typically account for about half of the models’ root 

mean square errors.  However, the root-mean square errors of the models are generally 

much larger than the biases of the composite output, indicating that the systematic errors 

differ considerably among the models.   There is a tendency for the models with the 

smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger 

increases of Arctic precipitation and decreases of Arctic sea level pressure when 

greenhouse gas concentrations are increased.  Since several models have substantially 

smaller systematic errors than the other models, the differences in greenhouse projections 

imply that the choice of a subset of models may offer a viable approach to narrowing the 

uncertainty and obtaining more robust estimates of future climate change in regions such 

as Alaska, Greenland and the broader Arctic.
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1.  Introduction   

 
    
Global climate models are the most widely used tools for projections of climate change 

over the timescale of a century.  The periodic assessments by the Intergovernmental 

Panel on Climate Change (IPCC) have relied heavily on global model simulations of 

future climate driven by various emission scenarios.  The global model simulations show 

a polar amplification of the greenhouse-driven warming and of other variations in climate 

(Serreze and Francis, 2006; Wang et al., 2007), although the ratio of the models’ 

projected changes to the natural variability is not necessarily greater in the Arctic than in 

lower latitudes (Kattsov and Sporyshev, 2006). 

 

Given the likelihood that the Arctic will experience greater climate changes than most 

other regions over the next century, the credibility of the model simulations of Arctic 

climate becomes a key issue.  The absence of databases for validation of future climate 

simulations increases the importance of evaluations of models’ ability to simulate recent 

climate, for which syntheses of observational data are available.  

  

Greenhouse-driven climate change represents a response to the radiative forcing 

associated with increases of carbon dioxide, methane, water vapor and other radiatively 

active gases, as well as associated changes in cloudiness.  The response varies widely 

among models because it is strongly modified by feedbacks involving clouds, the 

cryosphere, water vapor and other processes whose effects are not well understood.  

While changes in the radiative forcing associated with increasing greenhouse gases have 
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thus far been relatively small (only a few Watts per square meter -- IPCC, 2007), a much 

more potent change in forcing occurs each year through the seasonal cycle of solar 

radiation.  In the present paper, we place the models’ ability to capture the seasonal cycle 

of present-day climate at the core of a strategy for evaluating the models’ simulations of 

Arctic climate.  Our evaluation is motivated by regional applications of the climate model 

output in the Arctic, specifically the climatically sensitive regions of Alaska and 

Greenland.  Both these regions have surface states that can be fundamentally altered by 

relatively small climate changes:  much of Alaska is underlain by permafrost (thick and 

continuous in the North, discontinuous and thin in much of the interior), while Greenland 

is dominated by an ice sheet that may already be responding to climate change (Rignot 

and Kanagaratnam, 2006; Dowdeswell, 2006).  Greenland also has permafrost in much of 

the narrow strip of land between the ice sheet and the surrounding seas. 

 

The analysis of the model results described here is directed at the following questions: 

 How does model performance over Alaska and Greenland compare with 

performance over the broader pan-Arctic and the Northern Hemisphere 

domains?  Specifically, are the models with the smallest errors in the broader 

Northern Hemisphere also the models with the smallest errors in the Arctic and, 

particularly, in Alaska and Greenland? 

 Are the models’ errors attributable primarily to relatively uniform biases, i.e., to 

the fact that the models are consistently too warm, too cold, too wet, too dry, 

etc? 
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 Do 21st-century projections of Arctic change show any systematic dependence 

on the validity of the different models’ simulations of present-day climate? 

 

2. Model output and validation data 

Our evaluation is based on the 20th-century simulations by the models used in the Fourth 

Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC. 

2007).  These models are being used in the third phase of the Climate Model 

Intercomparison Project (CMIP, http://www-pcmdi.llnl.gov/projects/cmip/index.php) and 

will hereafter be referred to as the CMIP3 models.  The output used here consists of the 

monthly grids of surface air temperature, precipitation and sea level pressure for 1958-

2000, which is a subperiod of the 20th-century simulations by these models and is also the 

period spanned by the validation fields (see below).  Most of the model simulations were 

begun in the 1800s and continued through 2000 with prescribed greenhouse gas 

concentrations and, in some cases, estimated sulfate aerosols and variable solar forcing 

(Table 1; see discussion in Wang et al. (2007)).  Most of the simulations were continued 

through the 21st-century with forcing prescribed from the SRES emission scenarios (A2, 

A1B, B1, etc.) of the IPCC (Nakicenovicet al., 2000).  For the evaluation performed in 

this study, we use only the output from the 20th-century simulations to evaluate the 

models’ performance. 

 

The CMIP3 model output is compared here against the European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis, ERA-40), which directly assimilates 
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observed air temperature and sea level pressure (SLP) observations into a reanalysis 

product spanning 1958-2000.  Precipitation is computed by the model used in the data 

assimilation, i.e., observed precipitation data are not assimilated into the reanalysis.  The 

ERA-40 is one of the most consistent and accurate gridded representations of these 

variables available, and it compares favorably with other reanalyses of the Arctic 

(Bromwich et al., 2007).  It is therefore a logical choice for observational analyses from 

which we determine the model biases of late-twentieth-century surface air temperatures, 

precipitation and sea level pressure (SLP). (Data and documentation for the ERA-40 can 

be found online at http://www.ecmwf.int/research/era/Products.).  While the ERA-40 

reanalysis was performed at T106 (~125 km) resolution with 60 levels, we use the 

version of the output archived on a 2.5° latitude x 2.5° longitude grid for compatibility 

with the climate model output.  Since our evaluation is limited to surface air temperature, 

precipitation and sea level pressure, no upper-air levels of the reanalysis output are used 

here. 

To facilitate global climate model (GCM) intercomparison and validation against the 

reanalysis data, all monthly fields of GCM temperature, precipitation and SLP are 

interpolated to the common 2.5° × 2.5° latitude–longitude ERA-40 grid. Our evaluation 

of the models’ simulated fields uses monthly, seasonal, and annual climatological means 

for the late-twentieth-century period 1958-2000.  

3. Validation method 

The core statistic of our validation is the root-mean-square error (RMSE) evaluated from 

the differences between ERA-40 and each model for each grid point and calendar month.  
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For those models for which ensembles of simulations were archived, we use only the first 

ensemble member for consistency with models having only one simulation in the CMIP3 

archive.  In all cases, the differences are between climatological means for the 1958-2000 

period.  The RMSE calculations are performed for each of the fifteen models, for each 

calendar month, and area-weighted for each of four domains: Alaska (shown in Fig. 1), 

Greenland (shown in Fig. 1), the “pan-Arctic” polar cap (60°-90°N) and a middle-high 

latitude “Northern Hemisphere” domain (20-90°N).  The Alaskan and Greenland 

domains are approximately equal in area and are contained within the Arctic and 

Northern Hemisphere domains (except for a small portion of southeastern Alaska), so the 

results for the various domains are not independent.  The reason for our choice of the four 

overlapping domains is that, although our primary interest is in the models’ performance 

for Alaska and Greenland, the simulation of present-day and future climate in these 

regions will depend on the simulation of regions from which weather systems move 

toward Greenland and Alaska.  In particular, the larger-scale circulation over much of the 

Northern Hemisphere influences Alaska and Greenland via advection and 

teleconnections, so credible simulations of future changes will depend on the models’ 

ability to capture the large-scale circulation of the pan-Arctic and Northern Hemisphere 

domains. 

While the RMSEs were evaluated for all three variables (temperature, precipitation, sea 

level pressure), the calculation of the RMSE for SLP differed from the calculation of the 

other RMSEs by the removal of the domain averages from all SLP grids (ERA-40 and 

CMIP3 models).  This was done because the spatial gradients are the key features of the 

SLP fields, as it is the gradients of pressure that determine the winds.  
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As a seasonally inclusive measure of the models’ success in simulating the regional and 

larger-scale climates, we sum the RMSE values over the 12 calendar months.  In this 

respect, we are evaluating the models’ ability to simulate the seasonal cycle and hence 

the models’ sentitivities to the cycle of solar forcing.  The use of the seasonal cycle as a 

“surrogate” measure of climate sensitivity is based on the premise that the response to 

seasonal changes in solar radiation should depend on at least some of the same processes 

that determine a model’s response to other changes of forcing (Tsushima et al., 2005; 

Nall and Qu, 2006).  This reasoning has motivated a variety of past studies, and the 

results are somewhat mixed.  Lindzen at al. (1995), for example, found that the seasonal 

cycle of globally averaged temperatures did not correspond well with the signature of 

CO2-induced climate change in one particular model, primarily because of differences in 

the seasonal cycles of globally averaged temperature at the surface and in the middle 

troposphere. On the other hand, Knutti et al. (2006) evaluated relationships between the 

CMIP3 models’ climate sensitivities (defined as the equilibrium global temperature 

response to a global change in forcing, e.g., from increasing greenhouse gas 

concentrations) and the amplitudes of their seasonal cycles.  They found that the models 

with the largest climate sensitivities tended to overestimate the seasonal cycle of surface 

air temperature when compared with observations, and concluded that “the amplitude of 

the seasonal cycle in temperature provides a strong constraint on climate sensitivity” 

(Knutti et al., p. 4232).  Hall and Qu (2006) took this approach a step further and 

focussed on the snow albedo feedback as a determinant of both the amplitude of the 

seasonal cycle and of climate sensitivity.  They found that the surface albedo-temperature 

sensitivity in the seasonal cycle was an excellent predictor of this sensitivity in 
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greenhouse-driven climate change simulations.  The snow albedo feedback is especially 

pertinent to the present study, since snowmelt in Alaska occurs primarily during April 

and May when insolation is relatively strong.  Earlier work by Hall (2004) showed that 

about half the high-latitude response to greenhouse forcing was attributable to the albedo 

feedback associated with retreating snow and ice. 

After summation of the regional mean RMSEs over the 12 calendar months, the sums are 

used to rank the models.  The model with the smallest 12-month sum of the RMSE is 

ranked #1 for that variable and region, while the model with the largest 12-month sum of 

the RMSE is ranked #15.  The ranks can then be summed over different variables and/or 

different regions, depending upon a user’s priorities for variables and regional emphasis.  

The raw RMSE values for individual months also enable users to assess the utility of a 

particular model for a particular month or season. 

One disadvantage to the above procedure is that it does not distinguish between two 

contributions to the RMSE: the portion due to the bias in a model’s annual mean, and the 

errors in the seasonal cycle that are superimposed on the model’s annual mean.  In order 

to address this distinction, we calculate a second set of RMSEs based on the models’ 

errors after removal of the annual mean error (bias).  The differences between these two 

sets of RMSEs, both of which are presented in the following section, indicate the 

contributions of the annual mean biases to the total RMSEs.    

4. Results 
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The Root Mean Square Errors vary widely among models, across seasons, and across 

regions.  In order to illustrate the seasonal and regional dependencies of the RMSEs, the 

median model RMSE values of each variable for each season are shown in Figures 2, 3 

and 4 for surface air temperature, precipitation and sea level pressure, respectively.  In all 

cases, the RMSEs computed after removal of the annual mean bias are shown as grey 

bars adjacent to the total RMSEs (black bars).  It is apparent from Figure 2 that 

approximately half of the total RMSE of temperature is attributable to the bias in the 

annual mean temperature, although the removal of the annual mean has a smaller impact 

on the RMSE in summer than in winter.  Largely because the mean biases are smaller in 

summer than in winter, the total RMSEs are smaller in summer than in winter in all 

domains.  The model-median temperature RMSE is generally smaller for Alaska and 

Greenland than for the entire Arctic polar cap (60-90°N) except in summer, although it is 

comparable to the broader hemispheric (20-90°N) values.  It should be noted that the 

quality of the ERA-40 surface air temperatures may be worse over the Arctic Ocean 

(roughly 75-90°N) and its peripheral seas than over the northern land areas due to 

uncertainties in the prescribed sea ice concentrations. 

Precipitation is unique among the three variables in the sense that the removal of the 

annual mean bias generally increases the RMSE (Figure 3), although the increase over 

the Alaskan domain is small (and slightly negative in winter, spring and autumn).  The 

interpretation is that the removel of the annual mean bias actually increases the bias in 

those seasons with the largest precipitation amounts (summer, autumn).  By either 

measure of RMSE, the precipitation RMSEs for Alaska and Greenland are larger than 

those for the entire Arctic polar cap (but smaller than for the larger 20-90°N domain. The 
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precipitation RMSEs for Alaska and Greenland are smallest in spring, which is generally 

a dry season in both regions.   

The RMSEs of sea level pressure (Figure 4) show a similar seasonal cycle -- largest in 

winter -- to those of temperature, although it should be noted that the actual magnitudes 

of the temperature and SLP RMSEs are not directly comparable because of the different 

units.  The annual mean bias accounts for a larger portion of the total RMSEs in the 

Alaskan and Greenland domains than in the larger domains, especially 20-90ºN.   

A substantial portion of the RMSE arrises from biases in the models’ annual means, upon 

which the seasonal cycles are superimposed.  The gray bars of Figs. 2-4 show the RMSE 

errors after removal of the model’s annual mean biases.  It is apparent that the impact of 

the removal of the annual mean biases is greater for the smaller domains (Alaska and 

Greenland), and the impact is also generally greater in the warm season (especially when 

the reduction of the RMSE error is viewed as a percentage of the total RMSE (black bars 

in Figs. 2-4).  However, the relative areal coverage of land fraction vs. ocean in the 

smaller domains is greater than the land fraction of the larger domains and the variability 

of temperature and precipitation are generally greater over land than ocean. 

This paper’s main objective is an identification of the models that are most successful at 

simulating the seasonal cycle of the climates of Alaska and Greenland.  The relevant 

information is contained in Figures 5-7 , which show the 12-month mean RMSEs of the 

different models, arranged in order of increasing RMSE, for the three variables.  Each 

figure contains a separate display for (a) Alaska, (b) Greenland, (c) the pan-Arctic, 60-

90°N, and (d) the extratropical Northern Hemisphere, 20-90°N.  It is apparent from these 
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figures, especially Figure 5 for temperature, that the models vary widely in their ability to 

capture the seasonal climates of Alaska and Greenland.  For example, the yearly averaged 

RMSE of temperature over Alaska varies from 2.9°C in MPI-ECHAM5 to 11.0°C in 

IAP-FGOALS.  The range for the pan-Arctic domain (60-90°N) is even greater, from 

2.9°C to 13.6°C.  While the ranges are smaller for the other variables, the RMSEs still 

vary across the models by nearly a factor of two for precipitation and by more than a 

factor of two for sea level pressure.  Similar ranges are found for the larger domains, i.e., 

the pan-Arctic and hemispheric polar caps.       

Nevertheless, a noteworthy feature of Figures 5-7  is the tendency for some models to 

rank highest no matter which method variable is evaluated.  Moreover, the models that 

rank highest for Alaska tend to rank higher for Greenland.  There is also a tendency for 

these same models to have the smallest RMSEs over the larger domains, although there 

are exceptions.  Table 2 provides a synthesis of the model performance based on the two 

RMSE metrics -- annual mean bias included (Table 2a) and annual mean bias removed 

(Table 2b).  These tables rank the models from 1 (smallest RMSE) to 15 (largest RMSE) 

for each variable and domain.  As in Figures 5-7, these ranks are based on RMSEs 

summed over all twelve calendar months, so they incorporate the models’ successes or 

failures in capturing the seasonal cycle.  The right-most columns of Tables 2a and 2b are 

the sums of all 12 ranks (4 domains x 3 variables) of the models.  We refer to these 

columns as our “integrated ranks”. Because the domains are nested, the “integrated rank” 

effectively double-weights the model performance over the Arctic polar cap (60-90°N) 

and triple-weights the model performance over the Alaskan and Greenland regions (i.e., 
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Alaska and Greenland are included in both larger domains).  While this weighting is 

admittedly ad hoc, it is consistent with our focus on Alaska and Greenland. 

 If the model ranks are based on individual variables or domains, the order shifts 

somewhat.  The  top-ranking models for the different domains, based on the 

computational strategies used for Tables 2a and 2b,  are as follows: 

Ranks with annual mean biases included in RMSEs (Table 2a): 

  Rank        Alaska                     Greenland              60-90°N                20-90°N 

    1.     GFDL CM 2.0           GFDL CM 2.1         MPI-ECHAM5      MPI-ECHAM5 

    2.     GFDL CM 2.1          MPI-ECHAM5         GFDL CM 2.1        GFDL CM 2.1 

    3.   UKMO HADCM3        MIROC3                 MIROC3          MIROC3 (tie) CCCMA  

 

Ranks with annual mean biases removed (Table 2b): 

                     Alaska                     Greenland                60-90°N                20-90°N 

    1.       MPI-ECHAM5               MIROC3            MPI-ECHAM5      MPI-ECHAM5 

    2.       GFDL CM 2.1             GFDL CM2.1         GFDL CM 2.1       GFDL CM 2.1 

    3.         CNRM CM3               CNRM CM3         NCAR CCSM3      GFDL CM2.0 
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Based on the aggregate of the two sets of rankings, the top-performing models for Alaska 

are GFDL-CM2.1, MPI-ECHAM5, CNRM CM3, UKMO-HADCM3 and MIROC3.  The 

top-performing models for Greenland are GFDL-CM2.1, MIROC3, CNRM CM3 and 

MPI-ECHAM5. For each of the two larger domains (60-90°N 20-90°N), the two highest-

ranking models are MPI-ECHAM5 and GFDL CM2.1, while the MIROC3 model ranks 

3rd and 4th, respectively, for these two domains.  Thus there is strong overlap among the 

top performers for the larger domains (pan-Arctic and Northern Hemisphere) and the 

subregional domains (Alaska and Greenland). 

 When the ranks for a particular variable are summed over the four domains, the ranks for 

the three primary variables are: 

Ranks with annual mean biases included in RMSEs (Table 2a): 

                       Temperature                     Sea Level Pressure                    Precipitation 

    1.                 MIROC3                           MPI-ECHAM5                       GFDL CM 2.1  

    2.               GFDL CM 2.1                    GFDL CM 2.1                        MPI-ECHAM5 

    3.              MPI-ECHAM5                       CCCMA                            UKMO HADCM3  

 

Ranks with annual mean biases removed (Table 2b): 

                       Temperature                     Sea Level Pressure                    Precipitation 



 15 

    1.              MPI-ECHAM5                     CNRM CM3                          MPI-ECHAM5  

    2.               GFDL CM 2.1                    GFDL CM 2.1                        GFDL CM2.1 

    3.                  MIROC3                         MPI-ECHAM5                          IPSL CM4  

The above summaries, together with Table 2, confirm a conclusion of many other climate 

model evaluations, i.e., no single model outperforms all others for all regions or for all 

variables.  On the other hand, several of the CMIP3 models consistently rank close to the 

top, demonstrating that their ability to reproduce the seasonal cycle of high latitude 

climate of recent decades is superior to that of the other CMIP3 models.  The MPI 

ECHAM5 and GFDL CM2.1 models are clearly the highest ranking models overall.  The 

MIROC3 and UKMO-HADCM3 models also rank highly.  These higher-ranking models 

are the logical candidates for driving off-line simulations of high-latitude variables such 

as permafrost, glaciers/ice sheets, and terrestrial or marine ecosystems. 

With regard to the reasons for the different levels of skill over Alaska and Greenland (as 

well as the larger domains), no systematic relationship to model resolution emerged.  The 

models with the smallest RMSEs, MPI-ECHAM5 and GFDL CM 2.1 (Table 2), have 

resolutions that are neither highest nor lowest of the 15 models.  There is also no obvious 

relationship between model performance and the type of sea ice formulation in the 

models.  Other candidates for explanations of the differences in model performance 

include the cloud and radiative formulations, which are now being investigated elsewhere 

(Chapman et al., 2008); the planetary boundary layer parameterization; and the land 
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surface schemes of the various models. Biases in the large-scale atmospheric circulation, 

perhaps driven by processes outside the Arctic, are also candidates to explain the across-

model differences in temperature, precipitation and sea level pressure. 

The two highest ranking models  (MPI-ECHAM5 and GFDL-CM2.1) both included 

aerosol effects and ice-phase clouds in model versions that were implemented in 2005, 

which is more recent than the implementation date of most of the other CMIP3 models. 

Systematic experiments with these and other parameterizations are needed if the reasons 

for the relative success of these two models is to be established unambiguously.  

Nevertheless, there is a general tendency for the more recently implemented model 

versions to be the better performers in the Arctic. 

In order to provide some perspective for the RMSEs of the different variables, we show 

the models’ bias fields for January in Figures 8-10.  The composite fields included in 

these figures are based on the 14-model subset that excludes the IAP-FGOALS model, 

which is such an outlier (Figs. 5-7) that it skews the composite bias fields.   Figure 8 

shows that the 14-model composite biases of January temperature are generally less than 

about 3°C over most of the Arctic, except over the Barents Sea and far eastern Russian 

regions.  The Barents Sea bias arises from the models’ tendency to over-simulate the 

extent of sea ice in this area during winter.  There are more areas of negative (cold) bias 

than of positive (warm) bias, although the biases are generally no larger in the Arctic than 

in middle latitudes.  The 14-model composite field averages out many biases of opposite 

sign in the various models.  The January bias fields for the individual models show that 

larger biases occur in some models, and that there are both positive and negative biases 
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across the models at any location.  Particularly noteworthy is the large negative bias over 

southern Alaska in MPI-ECHAM5; this wintertime bias degrades the Alaskan 

temperature rank of this model, which otherwise ranks very highly in the Arctic. 

The precipitation biases (Figure 9) are more spatially complex than the biases of 

temperature and pressure, and they show a distinct orographic signature in the 14-model 

composite and in most of the individual models.  The negative (dry) biases of the models 

over the coastal mountains of southern Alaska, western Canada, southeastern Greenland 

and western Norway are indicative of a smoothing of the mountains that are subject to 

upslope flow in the major storm track regions.  The corresponding wet biases 

immediately inland of the dry upslope biases in some areas also point to the models’ 

over-smoothing of the topography, which is unable to create the full “precipitation 

shadow” effect that occurs downstream of major mountain ranges.  The raw output from 

the ERA-40 reanalysis has much finer resolution than the CMIP3 models (Table 1) and is 

hence better able to capture the pattern of heavy upslope flow and leeside “shadowing”.  

This pattern is strikingly apparent along the northwest coast of North America (Figure 9), 

where the models are too dry on the windward side and too wet on the lee side of the 

coastal mountains.  This bias is much less apparent in the summer, when the bias fields of 

most models show no orographic signature.  These error patterns point to the importance 

of downscaling GCM output fields when constructing site-specific climate change 

scenarios, especially for temperature and precipitation at locations in or near highly 

varying terrain. 
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The composite sea level pressure biases, shown in Figure 10, are also generally small, 

with magnitudes in the 14-model composite being less than 3-4 hPa almost everywhere in 

the middle and high latitudes.  Greenland and the eastern Arctic Ocean show positive 

biases, while the biases over Alaska and the North Pacific are negative.  The biases over 

the Bering Sea and Alaska imply cold advection over eastern Asia, consistent with the 

cold bias in that area during January (Figure 8, upper left).  The positive bias of 3-6 hPa 

over the eastern Arctic Ocean is similar to the errors found by Bitz et al. (2002) in the 

previous generation of global atmospheric models.  Individual models show much larger 

biases of both signs (Figure 10). 

The final question raised in Section 1 pertained to possible relationships between the 

models’ projected greenhouse changes and the relative accuracy of the simulations of 

present-day climate.  Figure 11a shows the models’ projected warming for 60-90°N 

plotted as a function of the integrated rank of the models.  The integrated rank used here 

is based on Table 2a and includes only the 20-90°N and 60-90°N domains.   (While the 

Alaska- and Greenland-specific domains are excluded because the projected warming is 

for the entire pan-Arctic domain, this makes little difference in Figure 11 because the 

ranks across the various domains are highly correlated).  The warming is defined as the 

area-weighted linear change in surface air temperature from 2001 to 2099 under the 

IPCC-A1B scenario.  While there is considerable scatter in the warming, there is a 

tendency for the highest-ranking (better performing) models to simulate the greatest 

warming over the 60-90°N domain.  The projected warming vs. model performance 

relationship is statistically significant at the 5% level.   The projected changes of 

precipitation (Figure 11b) show a similar dependence on the models’ integrated ranks, 
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with better performing models projecting larger increases of Arctic precipitation than the 

lower-ranking models.  While there is more scatter in the corresponding SLP results 

(Figure 11c), there is a tendency for larger 21st-century decreases in Arctic sea level 

pressure to be projected by higher-ranking models than by lower-ranking models. 

The projections summarized above are based on an intermediate scenario (A1B) of 

greenhouse forcing.  Because the models’ different climate sensitivities do not depend on 

the precise rates of increase of forcing, the models that produce the stronger (weaker) 

warming under A1B forcing tend to produce the stronger (weaker) warming under the A2 

and B1 forcing scenarios (IPCC, 2007, p. 763, Fig. 10.5).  Hence the results in Fig. 11 do 

not depend strongly on the choice of the A1B scenario. 

The dependence of the Arctic’s climate sensitivity on the RMSE used here may be 

considered surprising, since it is just as likely that “bad” models are biased warm as cold.  

This finding raises the question about whether the sensitivity is correlated with the 

amplitude of the seasonal cycle or with the bias.  The correlation between the projected 

warming and the amplitude of the simulated present-day seasonal cycle was found to be 

small and insignificant for the 60-90°N domain on which the results in Fig. 11 were 

based.  

5.  Conclusions 

This study represents an early step in evaluation of global climate model performance 

over Arctic subregions, with an eye toward the narrowing of the uncertainty in regional 

Arctic climate projections by the selection of an optimal subset of models.  It must be 
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emphasized that the ranking process used here is targeted at particular applications (i.e., 

forcing of permafrost models, planning for climate change in Alaska and Greenland) and 

hence contains arbitrary elements.  For example, the assignment of weights based on an 

ad hoc postulated equal importance of different variables and regions will not be 

appropriate for other regions and applications.  We present our approach and results in 

the spirit that they may stimulate enhancements or better alternative approaches to 

regional applications of climate model scenarios.  

Several questions about model performance were posed in Section 1.  Based on the 

results presented on the preceding section, the answers to those questions are as follows: 

Model performance over Alaska and Greenland is generally neither better nor worse than 

the performance over the pan-Arctic and Northern Hemisphere domains.  During winter 

and autumn, the temperature errors over Alaska and Greenland are somewhat smaller, but 

the precipitation errors are generally larger, than over the larger domains.  The specific 

models that perform best over the larger domains tend to be the ones that perform best 

over Alaska and Greenland, although a notable exception is the relative lack of success of 

the overall top-ranked model (MPI-ECHAM5) in capturing the winter temperatures over 

Alaska. 

The rankings of the models are largely unchanged when the bias of each model’s 

climatological annual mean is removed prior to the error calculation for the individual 

models.  The annual mean biases typically account for about half of the models’ root 

mean square errors. Thus the root-mean-square errors are not simply the manifestations 

of general tendencies for the models to be colder, warmer, wetter, drier, etc., than the 
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corresponding observationally-derived fields.  However, the root-mean square errors of 

the models are generally much larger than the biases of the composite output, indicating 

that the systematic errors differ considerably among the models.   

There is a tendency for the models with the smaller errors to simulate a larger greenhouse 

warming over the Arctic.  Since several models have substantially smaller systematic 

errors than the other models, the differences in warming imply that the choice of a subset 

of models may offer a viable approach to narrowing the uncertainty and obtaining more 

robust estimates of future climate change in regions such as Alaska, Greenland and the 

broader Arctic. The results in Figure 11 suggest that the uncertainty might be narrowed 

by eliminating models with the weaker projected warming in the Arctic, as those models 

tend to have the largest errors in simulations of the present-day climate.  Such an 

approach has already been suggested by Overland and Wang (2007) and Kattsov and 

Sporyshev (2006), and will be pursued in future assessments of Arctic change. 
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FIGURE CAPTIONS 

 

Fig. 1.  Map showing Alaskan and Greenland domains, also highlighting 60-90°N. 

 

Fig. 2.  Bar graph showing 15-model median RMSE of temperature by season for (a) 

Alaska, (b) Greenland, (c) 60-90°N, and (d) 20-90°N regions. 

 

Fig. 3.  Same as Fig. 2, but for precipitation. 

 

Fig. 4.  Same as Fig. 2, but for sea level pressure. 

 

Fig. 5. Area-averaged annual RMSE of GCM temperatures for 15 models (bars) for (a) 

Alaska, (b) Greenland, (c) 60-90°N, and (d) 20-90°N regions.  Black bars at left 

show total RMSEs, grey bars at right show RMSEs computed after removal of 

annual mean bias. 

 

Fig. 6.  Same as Fig. 5, but for precipitation. 

 

Fig. 7.  Same as Fig. 5, but for sea level pressure. 

 

Fig. 8. Maps of composite and 14 individual model biases of temperature for January 

(1958-2000). 
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Fig. 9.  Same as Fig. 8, but for precipitation. 

 

Fig. 10.  Same as Fig. 8, but for sea level pressure. 

 

Fig. 11.  Projected changes of  (a) temperature, (b) precipitation, and (c) sea level 

pressure change averaged over 60-90°N plotted against model performance rank 

(solid line). Changes are differences between linear-regression-derived trend 

line values for 2099 and 2000.  Linear best fit indicated as a dashed line in each 

plot. 
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TABLE CAPTIONS 

Table 1.  Fifteen IPCC AR4 models assessed in this study. Atmosphere and ocean model 

resolution as well as country of origin are also listed for each model.  (Detailed 

model documentation is available online at http://www-

pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php) 

Table 2:  Summary of performance rank derived from GCM RMSE for three variables: 

temperature, SLP, precipitation over four regions: Alaska, Greenland, Arctic 

(60-90°N) and NH (20-90°N).  The rankings in Table 2a are based on RMSEs 

that include the annual mean biases; Table 2b is based on RMSEs computed 

after removal of the annual mean biases.  An integrated rank defined as the sum 

of ranks over all regions and variables is included in the right-most column. 
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Table 1.  Fifteen IPCC AR4 models assessed in this study. Atmosphere and ocean model 

resolution as well as country of origin are also listed for each model.  (Detailed model 
documentation is available online at http://www-
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php) 

 

 

 IPCC AR4 model  Country Atmosphere 

Resolution 

Ocean Resolution # of 

20C3M 

ensemble 

members  

Observed 

forcing in 

20C3M 

1 NCAR_CCSM_3.0 USA T85L26 320x384L40 6 Yes 

2 CCCMA_CGCM_3.1 Canada T47L31 192x96L29 1 No 

3 CNRM_CM3 France T42L45 182x152L31 1 No 

4 CSIRO_MK_3.0 Australia T63L18 T63_2L31 1 No 

5 MPI_ECHAM5 Germany T63L31 1.5x1.5L40 3 No 

6 GFDL_CM2.0 USA 2.5°x2.5°L24 tripolar360x200L50 3 Yes 

7 GFDL_CM2.1 USA 2.5°x2.5°L24 tripolar360x200L50 3 Yes 

8 GISS_MODEL_E_R USA 5°x4°L13 5°x4°L13 9 Yes 

9 INMC_3.0 Russia 5°x5°L21 2.5°x2°L33 1 Yes 

10 IPSL_CM4 France 3.75°x2.5°L19 182x149L31 1 No 

11 MIROC_3.2_MEDRES Japan T42 L20 1.4°x(0.5-1.4°) L44 3 Yes 

12 MRI_CGCM_2.3.2a Japan T42 L30 (0.5°-2.5°)x2° L23 5 Yes 

13 NCAR_PCM1 USA T42L18 384x288 L32 2 Yes 

14 IAP_FGOALS1_0_G China 2.8°x3.0°L17 1.0°x1.0° L33 2 No 

15 UKMO_HADCM3 UK 3.75x2.5 L 1.25°x1.25° L20 2 No 
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Table 2:  Summary of performance rank derived from GCM RMSE for three variables: 
temperature, SLP, precipitation over four regions: Alaska, Greenland, Arctic (60-90°N) 
and NH (20-90°N).  The rankings in Table 2a are based on RMSEs that include the 
annual mean biases; Table 2b is based on RMSEs computed after removal of the 
annual mean biases.  An integrated rank defined as the sum of ranks over all regions 
and variables is included in the right-most column. 
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Figure 1: Map showing Alaskan and Greenland domains, also highlighting 60-90°N. 
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Figure 2: Area-averaged RMSE of GCM temperatures by season for 15 models (bars) for 
(a) Alaska, (b) Greenland, (c) 60-90°N, and (d) 20-90°N regions.  Black bars at 
left show total RMSEs, grey bars at right show RMSEs computed after removal 
of annual mean bias. 

 



 34 

 
Figure 3: Same as Fig. 2, but for precipitation. 
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Figure 4: Same as Fig. 2, but for sea level pressure. 
 



 36 

 
Figure 5: Area-averaged annual RMSE of GCM temperatures for 15 models (bars) for (a) 

Alaska, (b) Greenland, (c) 60-90°N, and (d) 20-90°N regions. 
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Figure 6: Same as Fig. 5, but for precipitation. 
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Figure 7: Same as Fig. 5, but for sea level pressure. 
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Figure 5: Maps of composite and 14 individual model temperature biases for January 
(1958-2000). 
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Figure 6: Same as Fig. 8, but for precipitation. 
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Figure 7: Same as Fig. 8, but for sea level pressure. 
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Figure 8: Linear (a) temperature, (b) precipitation, and (c) sea level pressure change for 

(60-90°N) plotted vs. model performance rank (solid line).   Linear best fit 
indicated as a dashed line in each plot. 


